Понятия со словосочетанием «среднее значение»
Сре́днее значе́ние — числовая характеристика множества чисел или функций (в математике); — некоторое число, заключённое между наименьшим и наибольшим из их значений.
Сдвиг среднего значения — это непараметрическая техника анализа пространства признаков для определения местоположения максимума плотности вероятности, так называемый алгоритм поиска моды. Область применения техники — кластерный анализ в компьютерном зрении и обработке изображений.
Связанные понятия
Коэффицие́нт асимметри́и в теории вероятностей — величина, характеризующая асимметрию распределения данной случайной величины.
Ковариа́ция (корреляционный момент, ковариационный момент) — в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.
Коэффицие́нт эксце́сса (коэффициент островершинности) в теории вероятностей — мера остроты пика распределения случайной величины.
Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.
Коэффицие́нт сдви́га — это параметр вероятностного распределения, имеющий специальный вид. Физически конкретное значение данного параметра может быть связано с выбором точки отсчёта шкалы измерения.
Средняя полезность (AU, англ. Average Utility) — это отношение общей полезности к количеству потреблённых единиц блага.
Сре́днее арифмети́ческое (в математике и статистике) множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Косинор или косинор-анализ — метод обработки коротких временных, основанный на приближении временного ряда косинусоидой.
Кванти́ли распределе́ния хи-квадра́т — числовые характеристики, широко используемые в задачах математической статистики таких как построение доверительных интервалов, проверка статистических гипотез и непараметрическое оценивание.
Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий...
Вариа́ция — различие значений какого-либо признака у разных единиц совокупности за один и тот же промежуток времени. Причиной возникновения вариации являются различные условия существования разных единиц совокупности. Вариация — необходимое условие существования и развития массовых явлений.
Статистические оценки — это статистики, которые используются для оценивания неизвестных параметров распределений случайной величины.
Информационное неравенство (математическая статистика) — неравенство для несмещённой оценки с локально минимальной дисперсией, задающее нижнюю границу для величины дисперсии этой оценки. Играет важную роль в теории асимптотически эффективных оценок.
Интервальная оце́нка — это пара чисел в математической статистике, оцениваемых на основе наблюдений, между которыми предположительно находится оцениваемый параметр.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Гистогра́мма в математической статистике — это функция, приближающая плотность вероятности некоторого распределения, построенная на основе выборки из него.
Кванти́ль в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем (см. ниже).
Коэффицие́нт масшта́ба — это параметр вероятностного распределения. Физически конкретное значение данного параметра может быть связано с выбором шкалы измерения.
Логарифмическое распределение в теории вероятностей — класс дискретных распределений. Логарифмическое распределение используется в различных приложениях, включая математическую генетику и физику.
Коэффициент формы — это отношение среднеквадратичного значения какой-то величины к среднему модулю (среднему абсолютному значению) той же величины. Если зависимость этой величины от другой переменной изобразить в виде графика, то коэффициент формы покажет, насколько форма этой линии отличается от горизонтальной прямой. Коэффициент формы постоянной функции равен единице.
Эффекти́вная оце́нка в математической статистике — несмещенная статистическая оценка, дисперсия которой совпадает с нижней гранью в неравенстве Крамера-Рао.
Индекс Тейла представляет собой показатель измерения социального неравенства, предложенный в 1967 году нидерландским экономистом Анри Тейлом. Индекс Тейла основан на предложенном Шенноном понятии информационной энтропии. В отличие от коэффициента Джини индекс Тейла разложим, то есть, если популяция разбита на группы, то индекс Тейла всей популяции можно записать в виде взвешенной суммы индексов Тейла каждой из групп и показателя социального неравенства между группами. Разложимость индекса Тейла позволяет...
Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации.
Коэффицие́нт (от лат. co(cum) «совместно» + efficients «производящий») — числовой множитель при буквенном выражении, множитель при той или иной степени неизвестного, или постоянный множитель при переменной величине.
Волати́льность, изменчивость (англ. volatility) — статистический финансовый показатель, характеризующий изменчивость цены на что-либо.
Логарифмический масштаб (шкала) — шкала, длина отрезка которой пропорциональна логарифму отношения величин, отмеченных на концах этого отрезка, в то время как на шкале в линейном масштабе длина отрезка пропорциональна разности величин на его концах.
Для определения средних или наиболее типичных значений совокупности используются показатели центра распределения. Основные из них — математическое ожидание, среднее арифметическое, среднее геометрическое, среднее гармоническое, среднее степенное, взвешенные средние, центр сгиба, медиана, мода.
Подробнее: Показатели центра распределения
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Геометри́ческое распределе́ние в теории вероятностей — распределение дискретной случайной величины, равной количеству испытаний случайного эксперимента до наблюдения первого «успеха».
Скользя́щая сре́дняя, скользя́щее сре́днее (англ. moving average, MA) — общее название для семейства функций, значения которых в каждой точке определения равны среднему значению исходной функции за предыдущий период.
Частотное распределение — метод статистического описания данных (измеренных значений, характерных значений). Математически распределение частот является функцией, которая в первую очередь определяет для каждого показателя идеальное значение, так как эта величина обычно уже измерена. Такое распределение можно представить в виде таблицы или графика, моделируя функциональные уравнения. В описательной статистике частота распределения имеет ряд математических функций, которые используются для выравнивания...
Высота и длина многочлена P с комплексными коэффициентами являются мерами его «размера».
Складной нож (англ. jackknife) — один из методов ресэмплинга (линейное приближением статистического бутстрэпа), используемый для оценки погрешности в статистическом выводе. Способ заключается в следующем: для каждого элемента вычисляется среднее значение выборки без учёта данного элемента, а затем — среднее всех таких значений. Для выборки из N элементов оценка получается путём вычисления среднего значения остальных N-1 элементов.
Т-критерий Вилкоксона — (также используются названия Т-критерий Уилкоксона, критерий Вилкоксона, критерий знаковых рангов Уилкоксона, критерий суммы рангов Уилкоксона) непараметрический статистический тест (критерий), используемый для проверки различий между двумя выборками парных или независимых измерений по уровню какого-либо количественного признака, измеренного в непрерывной или в порядковой шкале.. Впервые предложен Фрэнком Уилкоксоном. Другие названия — W-критерий Вилкоксона, критерий знаковых...
Подробнее: Критерий Уилкоксона
Функция концентрации (англ. concentration function) в теории вероятностей — одна из характеристик случайной величины. Функции концентрации используются в ряде задач теории вероятностей, в частности, при исследовании свойств свёрток распределений и предельных свойств сумм независимых случайных величин.
Медиа́на (от лат. mediāna — середина) в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой...
Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.
Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Ме́тод обра́тного преобразова́ния (Преобразование Н. В. Смирнова) — способ генерации случайных величин с заданной функцией распределения, путём модификации работы генератора равномерно распределённых чисел.
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.
Подробнее: Оценка апостериорного максимума